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Abstract The present paper describes thc use of a stochastic search procedure that is the basis of
genetic algorithms. in developing near-optimal topologies of load-bearing truss structures. The
problem addressed is onc wherein the structural geomctry is creatcd from a specification of load
conditions and available support points in the design space. The development of this geometry must
satisfy kinematic stability requirements in addition to the usual req uirements of structural strength
and stiffness. The approach is an adaptation of the ground structure method of topology opti
mization. and is implemented in a two-level genetic algorithm-based search. In this process. the
kinematic stability constraints are imposed at one level. followed by the treatment of response
constraints at a second Ievcl of optimization. Singular value decomposition is used to assess the
kinematic stability constrall1ts at the first level of design. and results in the creation of a finite
number of increasing weight. stable topologies. Member sizing is then introduced at a second level
of design. whcre minimal weight and response constraints on stresses. displacements and buckling
are simultaneously considered. At this level. the only admissible topologies are those identified
during the first stage and any stablc combination thereof. The design variable representation scheme
allows for both the rcmoval and addition of structural members during optimization.

1. INTRODLCTION

Formal methods of structural optimization have evolved as a consequence of over three
decades of research. Given the increased availability of efficient computer hardware, these
developments offer a significant new capability to systematically examine the solution
domain for complex structural design problems. Most research efforts in structural opti
mization over this period have focussed on problems where the structural geometry is fixed,
and component dimensions are sized to meet some design requirements. Both the optimality
criteria method (Berke and Khot, 1987) and the mathematical programming approach
(Schmit, 1981) have been effectively used in these problems. A modification of the member
sizing problem to include variations of structural geometry contributes to the complexity
of the problem. Here, it is worthwhile recognizing two distinct areas of study, i.e. the shape
optimization problems addressed in the context of 2-D and 3-D continuum structures
(Queau and Trompette. 1980; Bennett and Botkin. 1985) and variations in geometry of
discrete truss and frame structures introduced through changes in nodal locations (Pedersen,
1987; Vanderplaates. 1975). The selection of an optimal topology is arguably among the
most difficult structural optimization problems and. as evidenced by the available literature,
has received very limited attention. Here again, it is important to differentiate between the
topological designs that result in a gridlike continua (Prager and Rozvany, 1977), and the
determination of optimal element connectivity from a number of finite, albeit large, number
of possible connectivities (Topping, 1983: Kirsh, 1989). The latter problem constitutes the
focus of the present effort. Given a set of supports, concentrated loads and possible node
points in a structural domain, the problem is one of determining an optimal element
connectivity and member sizing that would result in a least weight structure, and also satisfy
the prescribed design constraints. In the literature, this problem is described as one where
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a ground structure (Fig. I) containing many joints and members defines the discrete version
of structural universe. and from which an optimal structure must be derived. Numerical
optimization techniques are used to eliminate the nonessential clements from this discrete
ground structure. In addition to the fact that the global optimum is sometimes singular and
cannot be reached by a continuous trcatmcnt of design variables. the dimensionality of the
optimization problem can be quite large in realistic structures. Finally. most such strategies
do not adcquately account for the re-introduction of an element in the structure after it has
been removed.

The ground structure approach was first proposcd by Darn e( al. (1964). where duality
was used to formulatc the optimal topology problem (minimal weight subject to stress
constraints) as one of Iincar programming. Thc design variables in such a formulation were
the cross-sectional area, and redundant member forces; to ensure the linear programming
form. the compatibilit:- conditions werc not explicitly considered. The resulting topology
and force field could then be used as base structures for inclusion of other constraints.

If a displacement formulation is used in the topology optimization problem. nonzero
lower bounds must be specified in order to guard against the possibility of introducing
kinematic instability in thc structure due to removal of members. Alternatively. member
forces can be used as design variahles (Hemp. 1958). The simultaneous analysis and design
approach has been used as yet another approach in the displacement formulation (Bendsoe
('I al.. 1991 : Sankaran~lrayanan and Haftka. 1992). In this method. the equilibrium equa
tions are treated as explicit equaJitv constraints. and the positive-definiteness of the stiffness
matrix is not critical.

[n an evaluation of numerical optunization methods for topological design. the issue
of problem dimensionality cannot he ignored. While traditional nonlinear programming
methods have heen employed "ith success in smaller problems. an increase in the number
of design variables (increasing grid points in the ground structure approach) is detrimental
in the efficiency of thc optimization techniq ues. A quasi-procedural approach. based on the
decomposition techniques. was proposed in an effort to reduce the problem dimensionality
(Hajela and Shankar. 1990). The optimal criterion method has also been adopted with
some success in larger problems (R07\any. 1990). The discontinuous nature of the design
space. however. requircs considcration of alternative search techniques.

The present paper describes a genetic algorithm-based global search strategy for
generating near-optimal structural topologies. and may be considered a derivative of the
ground structure approach. An advantage of the genetic search-based approach over
mathematical programming or optimality criteria-based methods is the ability to include
general design constraints in the problem. The optimization problem considered in this
work requires the genLTation of minimal weight structures with constraints on member
stresses. nodal displacements and clement huckling. Genetic algorithms arc a stochastic
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search procedure that have their philosophical basis in Darwin's postulate of the "survival
of the fittest". Thc application of this approach is particularly potent, as structural members
can be both added and removed during the search process. Additionally, the approach has
been shown to offer an increased probability of locating the global optimum (Hajela, 1990).
Subsequent sections discuss an implementation of this stratcgy in the topological design of
truss st ruct ures.

2. I'ROBLFM FOR\H.L\lIO'i

In the ground structure approach, the structural universe is specified in terms of a
number of node points and the allowed connections between these points. If the total
number of node points is J. and every node point can be connected to every other node in
this structural domain, there are a total of J(./ - I) 1 possible element connectivities in the
structure. If the presence or absence of an element is denoted by an integer variable t, that
can assume values of I or 0, respectively. and if the member cross-sectional area is denoted
by Ai' then a primal statement of the optimization problem can be written as follows.

Find t, and A, such that

J

F = I t,!,A, => min (structural wcight)
I

.II, ~ 0 (structural responsc constralllts).

(I)

(2)

Furthermore, additional requirement on structural gcometry may be stipulated in the
constraint set. Such requirements may includc. for example. that all support points bc
utilized in the load bearing process. In the ahove prohlem statement. the cross-sectional
area may be considered as continuous design variahles with prescribed lower and upper
bounds, or may be selected from a discrete set. Addition or removal of elements from the
ground structure can result in kinematically unstahle structurcs. In a displacement-based
analysis formulation. thc requiremcnt ofa positi\C definite stitfness matrix would be violated
as a result of this instability. Hence. a two-stagc optimization process, involving topological
design for kinematic stability requirements at thc first le\C1. followed hy optimization for
response constraints. is explored in this paper. Three distinct strategics can be considered
in this approach:

(a) The minimal structural weight topology is ohtained for kinematic stability constraint
only. and then the structural members resized to satisfy the response constraints. For
a single loading case and stress constraints only. a statically determinate structure
would result. For more complex design conditions, this approach is unlikely to yield
the global optimum.

(b) In addition to member resizing, other elements can be added to the strueture in sueh a
manner that no ne\\ nodes are introduced. The latter would preservc kinematic stability
and provide for additional load paths in the structure.

(e) The third approaeh. the one studied in this paper. is to simultaneously consider several
stahle topologies in the second stage optimization problem, where both member resizing
and addition. removal of members can be included in the design space. As shown in
subsequent sections of the paper, genetic algorithms are particularly well suited for this
task.

,I. (iEI\ETIC \UiORITIIMS

Although early developments in the tleld of genetic algorithms are generally credited
to Holland (1975). concepts of analysis and design hased on principles of biological evol
ution may be traced to the contributions of Rechenherg (1965). Genetic algorithms are
patterned after the hypothesized laws of nalLlral evolution. In essence. they represent a
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parallel stochastic search, where the design process simultaneously updates several can
didate designs such that the average value of a measure of fitness of these designs is
improved. This is philosophically similar to a biological population evolving in a manner
that it better adapts to a given environment. Response characteristics from various parts
of the design space are considered in the update scheme, thereby improving the probability
of locating a global optimum. Parallel random search in genetic algorithms mimics the
process of natural selection. The design alternatives representing a "population" in a given
generation are allowed to reproduce and cross among themselves, with reproductive bias
allocated to the most fit members of the population. Combination of the most favorable
characteristics of the mating members of the population results in a progeny population
that is more fit than the parent population. The terminology of genetic search, its principal
components and applications of the approach to structural design problems are discussed
in Hajela (1990).

In a biological population, genetic information is stored in the form of chromosomal
strings. The three basic processes which affect the chromosomal make-up in natural evol
ution are inversions of chromosome strings, an occasional mutation of genetic information
and a crossover of genetic information between the reproducing parents. The last process
is an exchange of genetic material between the parents. and allows for beneficial genes to
be represented in the progeny. Genetic algorithms, in a manner similar to their natural
counterparts, usc chromosome-type rcprcsentations of possible solutions of the problem to
search for improved solutions. The use of such representations in place of actual design
variable valucs allows for an easy inclusion of discrete and integer design variables in the
problem. Also. as shown in subsequent sections. the method has no requirements on the
continuity or convexity of the design space. These features lend to the strength of the
genetic search approach in the topology optimization problem. The basic operators of
genetic search are reproduction, crossover and mutation, and are summarized here for
completeness.

In Holland's original work, bit string representations of possible solution to a given
problem were manipulated by the genetic operators to improve those solutions. Consider
a functionf(x) which is to be maximized between some limits x l11a , and X l11m on the design
variable x. Assume that a 10-digit binary number is used to represent the variable x. Then,
the maximum and minimum values of x are represented as follows:

X ma , = III III II II

Xm,n = 0000000000.

A linear scaling can be introduced to convert intermediate values of the binary number into
physical design variables. Each IO-digit string represents one design, and several such strings
constitute a population of designs. When more than one design variable is involved, the bit
string representations of each design variable can be stacked head-to-tail to form a single
chromosome-like string for the candidate design. In a function maximization problem, the
objective function fix) can itself be designated as the fitness function. The three basic
operators of genctic search arc then used in sequence to transform the current population
to one with better average fitness.

Reproduction: this operator biases the search process in favor of the more fit members
in the current population. This elitist strategy is implemented by assigning each design a
probability of selection in the transformation process in proportion to its current fitness.
The net result of this is that the more lit members of the population can participate in the
transformation process more than once, while the less fit members may be completely
suppressed.

Crosson'!": while the reproduction process simply allows the most fit members of a
current population to contribute to a larger extent to the progeny population, it is the
crossover operation that allows for an cxchange of design characteristics among the mating
members. Crossover is executed by selecting two mating parents, randomly choosing two
sites on each of the chromosomal strings. and swapping strings of Os and Is between the
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sites among the mating pair. An illustration of the crossover transform for the 10-digit
binary strings and underlined crossover sites is as follows:

ParentI

Parent2

Childl

Child2

= 1100100100

= 0101110001

= 1100110001

= 0101100100.

The crossover operation is carried out with a probability Pc. Typical values of this prob
ability range from 0.6 to 0.8.

Mutation: in working with a finite-sized population, as is often necessary to contain
computational costs, there is a risk of premature loss of some genetic information from the
population. As an example, if at a particular site on the string, all members of the population
contain either all Os or all Is, this site cannot be altered through a crossover operation. The
mutation operator is invoked with a low probability Pill .~ 0.01 ; at a randomly selected site
on the chromosomal string of the chosen design, the operation consists of switching of a 0
to a I or vice versa.

This three-stage process is repeated several times to obtain new generations of design
with improved fitness. The process is stopped after no appreciable change in fitness is
observed or if a specified number of function evaluations have been performed.

3.1. Genetic algorithms in topology optimi::ation
As stated in an earlier section, the topological optimization was performed in two

steps. At the first stage (S I), a number of low weight but kinematically stable topologies
were generated through the use of the genetic algorithm. Structural response constraints
(stress, buckling and/or displacement) were ignored in this stage. The second stage opti
mization (S2) was largely a member resizing exercise, with emphasis on minimal weight
and satisfaction of the response constraints. The structural topologies generated in SI were
used as seeds in S2; structural member removal or addition was permitted only to the
extent that the resulting topology belonged to the subset of stable topologies identified in
S I. In a variation of this strategy, referred to as S I" new topologies developed in S2 were
added to the SI set when found to be stable. The optimization problems for stage I may
be stated as follows.

3.1.1. Sl problem statement. Find t/ E T so as to

M · . . . IVJ '\ I JAlnlmlze. vv = L.. ,t j 110111

subject to: gJ(tj) ~ o.

(3)

(4)

Here T is the structure universe or ground structure from which the topology must be
developed, Al10m is a nominal value of cross-sectional area used for all members and gJ is
an inequality constraint on the kinematic stability of the Jth structure. A singular value
decomposition approach (Forsythe et al., 1977) was used to assess the degree of kinematic
instability. In the genetic algorithm approach, a sharing function concept (Goldberg and
Richardson, 1987) was used to generate topologies not only for minimum weight, but also
for increasing weight. The topologies generated during this stage are defined by f, which
is a stable subset of the structural universe, f E T.
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3.1.2. 52 problem statement. Find t;' E:: t and A, E:: A so as to

Minimize J.·V I
= I/,t;'A j

subJcct to: .(;'(1,) ~ 0

(5)

(6)

(7)

Here, as before, gJ represents a constraint on the kinematic stability of the Jth structure.
This constraint simply ensures that the new topologies generated from a parent topology
either belong to the subset t or are kinematically stable structures. In the S I' problem, t
is a set that expands to accommodate new stable topologies found in the S2 problem. The
constraints h{, represent limits on response quantities of interest. Since these response
constraints are evaluated for kinematically stable structures, any general response quantity
can be considered.

3.2. Design representatio/1
Central to the use of genetic search in the topology optImIzation problem is an

appropriate bit-string representation scheme for the truss topologies. For the SI problem,
this scheme is relatively easy, in that each possible location to which a structural member
can be assigned is represented by a 1 or 0, denoting presence or absence of the member,
respectively. The length of the bit-string. therefore. is the same as the number of possible
members in the ground structure. The starting population of designs can be generated at
random, and is a mix of stable and unstable topologies with varying degrees of connectivity.

For the S2 problem, cross-sectional areas of the bar elements are also included as
design variables, and the precision with which each variable is to be represented determines
the bit-string length. A bit-string of length ""/II" can represent 2'" distinct numbers. Hence,
if a design variable x has lower and upper bounds given as xl. and .y[, respectively, and
must be represented to a precision A" then a minimum requirement on the bit-string length
for that variable is obtained from the following relationship:

+1. (8)

Note that if the design variables are to be chosen from a discrete set, the bit-string length
would simply be determined by the number of admissible variations of the design variable.
To accommodate the member sizing problem, the bit-strings for the S2 problem are rela
tively longer than those of the S I problem, and the size of the population which must be
used in the genetic search must be increased in proportion. Since the population size is
directly related to the computational requirements, its selection is a significant issue in
genetic search.

3.3. Impleme/1tatio/1 o!gc/1ctic scarch
In the use of genetic search for the topology optImIzation problems described in

previous sections, the issues of selecting a fitness function that incorporates both the
objective and constraints, and choice of genetic algorithm parameters, are somewhat impor
tant. Additionally, in working with the limited size of population, there is a need to maintain
some diversity in the population as the search progresses. Note also that the SI problem
requires that a certain number of stable topologies be generated. Each such topology
represents a local minimum, and a special scheme was used to discover such multiple
relative optima. These issues arc discussed in this section.

3.3.1. Fit/1cSS jimctio/1. In a constrained optimization problem, the definition of a
fitness function requires that the objective and constraint functions be represented as a
single composite function. The multiple response constraints can be represented as a
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Fig. 2. Scaling of the cOIl'traint penalty term.

cumulative constraint (Hajela, 1981), or, as in the present work, by the usual exterior
penalty function form as follows:

where

P, = L <[lY, i = 1, 2, .... 114.
,I 1

(9)

if Pi? 0

otherwise i = 1.2. ... . IICOIl.
(10)

In the above, [II is any constraint that is considered in the optimization problem. The
composite constraints function can then be appended to the objective function Fi which is
to be minimized as

r = cIF+c,P,. (II)

where the subscript i refers to the ith member of the population. Sincc the genetic search
procedure maximizes a fitness function, one choice of such a fitness function may be I!Fi.

Alternatively, a fitness function may bc defined as the difference between F, and some
arbitrarily chosen constant that is larger than the maximum Fi = Fma , for the population.
The weighting coefficients ('I and Cc in the above equation arc critical to the genetic search
process. An undue domination of either the objective or the constraint component at any
given stage of the design process would bias the search process accordingly. In a limited
size population, this can prove detrimental to the ability of the method to locate the true
optimum. Furthermore, if one set of C 1 and ('c is used for thc entire population, it becomes
important to limit the magnitude of the penalty term P,. It is easy to see that if one of the
P, is inordinately large in comparison to others. then rna, for the population may be very
large in relation to most F" and the fitness of each member, defined as

( 12)

becomes almost similar. Stated differently. it becomes diftlcult to distinguish between good
and poor designs from the population. In the present work, a modified value of the penalty
PI was used in lieu of Pi, and is defined as follows:

if P, ~ L

if P> L.
(13)

Here, L represents an arbitrary bound, and is typically chosen as twice the average fitness
of any population in any generation of evolution. The variation of PI with Pi for different
values of 'l. is shown in Fig. 2. A value of 'l. = 0.2 was used in this work.
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3.3.2. Genetic azqorithm parameters. Of particular interest here are the probabilities of
crossover and mutation, and an appropriate population size. Several previous studies have
examined the subject of selecting these probabilities (Goldberg, 1989; Dejong, 1975), and
this selection has been shown to be closely linked to the problem under consideration. A
moderate to high probability of crossover (0.6-0.8) allows for a healthy exchange of design
characteristics among members of the population. A value of Pc = 0.8 was used in all
experiments described in this work. A probability of mutation of 0.005-0.05 has been
used with success in previous studies. Higher values of Pm tend to introduce convergence
characteristics similar to random walk. With PIU = 0, there is a real hazard of losing valuable
design characteristics at an early stage in the design process. A value of Pm = 0.01 was used
in the work reported in this paper.

The population size is fundamental to successful use of the genetic search process.
Small population sizes converge very rapidly and only a few design alternatives are explored.
In contrast, excessively large populations imply long waiting times for convergence and
significant increases in computational costs. Goldberg (1985) proposed an estimate of an
optimal population size that is based on maximizing the rate at which different designs are
processed. This is closely related to the string length of each design representation. A binary
coded string length of In offers 2'" distinct representations. For population size of M, the
number of bit-string patterns of length i that can be derived from strings of length 1can be
shown to be as follows:

! (/\ { l (l)JlM}S(mJ) = I~O J2 1 1- 1-:2 . (14)

The rate at which these patterns are processed is indicative of the performance of the genetic
search, and is expressed as foHows :

dS / .
dt = (So -2 );l1t. (15)

Here, So and 2/ are the total number of schemata in the initial and final populations,
respectively. This function can be maximized with respect to the population size for the
design problem under consideration, using a one-dimensional maximization scheme. In the
Sl problem, string lengths of In = 14 to 111 = 33 were used. For the S2 problem, string
lengths varied between m = 56 and m = 132. From these values of string lengths, Goldberg's
estimates of optimal population size ranged from M = 10 to M = 103 Previous experience
has shown that these estimates are overly conservative, and with schemes that disrupt the
normal convergence dynamics (such as the sharing function approach), much smaller
populations can be used in practice. For most of the results presented in this paper, a value
of M = 40-50 was used in the Sl problem, and M = 80-120 for the S2 problem.

3.3.3. Sharing/unction. The concept of sharing function introduced by Goldberg and
Richardson can be readily extended to maintaining diversity in the population during a
genetic search, and in developing multiple relative optima in the design space. The approach
is based on the concept of shared resources among distinct sets of a population; in the
event of multiple relative optima, each set may correspond to one local optimum. The
principle of sharing is implemented by degrading the fitness of each design in proportion
to the number of designs located in its neighborhood through the use of sharing functions.
As the number of designs about some relative optimum increases, their fitness is scaled
downward, forcing these designs to move to another relative optimum where the fitness
can be enhanced. The extent of sharing is controlled by a sharing parameter (J,h (typically
chosen between 0.1 and 1.0), in terms of which the sharing function is defined as foHows :
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Fig. 3. Ground structure for 14-bar truss.

if dlf < (J,h

otherwise.
(16)

Here, di, is a metric indicative of the distance between designs i and j, and exponent f3 is
typically chosen as 2. If two designs i and j are very close, di! is almost zero, and ¢(d,J ~ I.
If du > (J,I" ¢ = O. The fitness of a design i is modified as

]; = I L¢(e/,),
M

(17)

where M is the number of designs located in the vicinity of the ith design. If the distance
metric d i! is evaluated in the decoded design space, the sharing is called a phenotypic sharing.
This distance metric is computed as follows:

(18)

Here, Xk denotes the kth component of the ith design. For the SI problem, where the
minimum value of d" is I, any choice of (J,h > I will result in the creation of alternative
topologies; a value of (J,h = 0.1 was used in the present work. For the S2 problem, sharing
was used to retain diversity in the population because of a limited population size. The
distance metric for this problem was computed in the decoded design space, and depending
on the size of the design variables, (J,h = 0.5-1.0 was used in the example problems.

4 TEST PROBLEMS

The genetic search approach described in the preceding sections was implemented on
a number of test problems. Due to the stochastic nature of the genetic search, the initial
ization of the population and the genetic transformation operators are controlled through
the generation ofpseudo random numbers. Depending upon the seed used for the generation
of the random numbers, the outcome of the search can vary. For each of the test problems
described in this section, the search was repeated a number of times, with different values
of the random seed, and the results reported here are the best obtained. However, for this
class and size of problems, the scatter was relatively small; indeed, in may cases, the same
designs were often generated for different values of the random seed (although a slightly
different number of function evaluations may have been required to obtain the result).

4.1 Fourteen-bar truss
The ground structure for the first problem, a cantilever truss, is as shown in Fig. 3.

Two distinct cases of this problem, one with stress constraints only, and the second with
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Fig. 4. Randomly seeded topologies for 14-bar truss.

both stress and displacement constraints, were considered. In each of these cases, the cross
sectional areas were treated as discrete variables.

For the stress constrained problem, design variables were allowed to vary in the range
0.0-12.0 in", in increments of 1.0 in"; for the case where both stress and displacement
constraints were included, this range was increased to vary between 0.0 and 30.0 in" in
increments of 1.0 in".

In the SI problem, a randomly generated population of size M = 30 was considered.
The nominal cross-sectional area of each element was specified as 1.0 in". A subset of these
randomly generated topologies is shown in Fig. 4; as can be seen from this figure, there is
no assurance of kinematic stability in these designs.

The 14-digit strings representing each design were then subjected to a genetic search,
to generate stable topologies of increasing weights. The sharing function approach with
(J,h = 0.1 was used in this task. Figure 5 shows 10 of the least weight stable topologies
generated during this phase. This search for the requisite number of kinematically stable
topologies required 33 generations of evolution; considering a total population size of 30
and a probability of crossover of 0.8, this implies that about 790 (30 x 30 x 0.8) alternatives
were examined by the search technique. Copies of the best 25 topologies were chosen to
create a seeded population of size 50 for the S2 problem, where the topology was developed
for minimal weight and satisfaction of the prescribed constraints. The sizing variables in
the S2 problem require an increase in the string lengths. In this work, each cross-sectional
area variable was represented by a four-digit string, resulting in a string length for each
design of In = 56. The converged solution for this problem was obtained at the 47th
generation ofevolution, which by a calculation similar to the one in the SI problem required
1880 alternatives to be examined. Note, however, that the final optimal topology was
already obtained after the 14th generation (560 function evaluations), and the remaining
function evaluations were only necessary to converge the cross-sectional dimensions of this
topology. This suggests the possibility of using a hybrid search technique, where once an
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Fig 5. Ten least weight topologies from SI problem for 14-bar truss.
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optimal topology has been identified, the member sizing could be relegated to a locally
convergent mathematical programming algorithm.

For the stress and displacement constraints where the range ofdesign variable variation
was larger, even longer string lengths were required. It is worthwhile indicating that the
genetic search code automatically determines the string length required to maintain a
prescribed precision in the search process. Random seeding of sizing variables for the 25
topologies developed in the SI problem was done to create the initial population for the S2
problem of size M = 100. The final designs for this test problem, for both stress and
stress/displacement constraints, are summarized in Table I. The best topology obtained is as
shown in Fig. 6, and compares well with optimal designs presented in previous publications
(Kirsh, 1990; Ringertz, 1985). The problem was repeated for stress constraints only, with
design variables once again ranging between 0.0 and 12.0 in2

, in increments of 0.1 in2
. This

Table I. Optlmization results for 14-bar truss problem

Stress constraints only
ll. = precision

0.1 in' Continuous

Stress/displacement constraints
ll. = precision

Continuous

ID 1.0 in' Multistage (Kirsh. 1990) 1.0 in' (Ringertz. 1985)
---_._-._--.

8 8.1 8.0 8.0 28 30.10
8 80 8.0 8.0 24 22.13

3 4 4.2 4.0 4.0 16 15.05
4 6 5.8 5.8 5.666 6 6.08
5 6 6.3 60 5.666 21 21.28
6 6 6.1 6.0 5.666 22 21.28

Obj. 1636.4 1657.5 1626.0 1585.4 4942.7 4898.0
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Fig. 6. Optimal topology from 52 problem for 14-bar truss.

-I

120"

120"

120"

20K

120"

20K

120"

20K

120"

Gcomclfy paramclcr a = h / I

Fig. 7. Bridge-type truss.

problem required string lengths to be increased to account for the increased precision of
design variable representation; a seven-digit binary string was required for each element
cross-section area, resulting in a total string length of 98. With this increased number of
design alternatives represented in the design space, a much larger population size would
normally be required. Even working with a population size of 100 yielded designs that were
heavier than the case where a precision of 1.0 inc was assumed. A novel multistage search
strategy in genetic algorithms described in Lin and Hajela (1993) was adopted, where the
precision of design variable representation was enhanced in steps, going from 1.0 to 0.5 to
0.25 inc, and finally to the desired value of 0.1 inc. Here, with a population size of 100,
improved designs were generated, and are summarized in Table I. This strategy is based
on the premise that relatively coarser representations of the design variables may be used
to identify promising regions in the design space, and a higher precision of representation
may then be introduced in a reduced search space without an attendant increase in the
population size.

4.2 Bridge-type truss
The second test problem is a single span, bridge-type structure that is simply-supported,

the ground structure for which is shown in Fig. 7. This is a planar truss with 15 nodes and
61 possible interconnections between these nodes. The loading is shown in the figure, and
consists of three simultaneously applied vertical loads. Symmetry of loading and support
conditions allow us to represent the design by a 33-digit binary string. A parameter r:t. = hi!
is used to define the structural geometry, where h and I are indicated in the figure. A
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Fig. 8. Stable topologies from S I problem for bridge-type truss.

Symmetric

7

Fig. 9. Optimallopology developed In S2 problem for bridge-type truss.

constant horizontal spacing I = 120 in was used in this exercise, and the geometry varied
by changing h. Optimal topologies were determined for three distinct value of rx (=0.5, 1.0
and 1.5). Material properties were assumed to be those for an aluminum alloy (E = 10
Mpsi, p = 0.1 Ib in'). Absolute values of the tension and compression yield stresses were
selected as al = a2 = 20 kpsi.

As a first exercise. an optimal topology was developed for stress constraints only, using
the two-stage process described in the previous sections. A population size of M = 60 was
used in the SI problem, and a sample of stable topologies developed in this stage is shown
in Fig. 8. The required number ofconverged stable designs were obtained in 129 generations.

For the S2 problem, discrete variations in cross-sectional areas ranging from 0.0 to 2.0
in2 in steps of 0.10 in2 were considered. A total of 100 least weight topologies developed in
the SI problem were used to seed the S2 problem domain with a random distribution of
cross-sectional areas to create a population size of 200. The optimal topology developed at
the end of the S2 problem is shown in Fig. 9. This converged solution was obtained at the
78th generation of evolution. This is a statically determinate structure and the computed
member sizes are closest to values obtained from a fully stressed sizing, where continuous
variations in the member sizes was permitted. The results are presented in Table 2 and are
compared to those of Dorn et al. (1964) and Dobbs and Felton (1969).

The optimal population size for a string length til = 132, as based on the estimate
proposed by Goldberg, is of the order of IOJ. The S2 problem was executed for population
sizes of 300 and 100 without the use of sharing to create genetic diversity. The case with a
population size of 100 was rerun with sharing, and all results are summarized in Table 3.
Clearly, the use of sharing has the same influence as increasing the population size, as it
prevents early convergence of all members of the population to similar patterns.
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Table ~ Comparisons of the optimal wClghts for the bridge-type truss with stress constraints
only

Case

1. ~ ()

7=1
1.=1

Dobbs and Fcltllll (1969)
,~ = continuous

~~x.o

~o~.o

~ I~o

Dorn ('/ al. (1964)

'" = continuous

~~2g

192.2
210.2

Present study
'" = 0.1 O/continuous

232.4;2228
202.9:1 92.2
230.6/210.2

Casc

Pop = [00
no sharing
Pop = 100
sharing
Pop = 300
no sharing

lable .\ Effect of sharing function on thc truss weight

Design variables. '" = O.I~. (T"II = 20 kpsi
Weight

-l 6 9 10 (lb)

U 0.7' 0.7' (J.(, o 1~ 0.6 1.5 1.35 0.6 1.05 242.2

I' 07~ 0.7' (17~ 0.15 06 1.5 1.05 0.6 1.05 238.6

I' o 7' 11.7' 116 O.l~ 11.6 1.5 1.05 0.6 1.05 235.0

This example was also used for a second set of numerical experiments in which the
stable topologies dcvelopcd in 5 I were clustered into groups on the basis of the types of
elements present in the structure. A simple scheme to attain this clustering consisted of
separating topologies with h = 120 in and h = 240 in. The subset of 100 designs obtained
from 5 I contained 55 topologies of thc formcr and 45 topologies of the latter type,
respectively. Each of the topologies was used to seed random populations for two parallel
simulations of the genetic search. The final design obtained from the run consisting of
topologies of depth 240 in is shown in Fig. 10. Note that this design is also the globally
optimal topology obtained by Dorn ('{ al. (1964), and has an optimal weight of 202.9 Ib
based on a discrete variation in the design variable increments of 0.1 in". This weight
compares favorably with the value of 192.2 Ib presented by Dorn, where a continuous
variation in the design variables was admitted. The function evaluations necessary for
converged solutions were of the same order of magnitude as in the previous examples.

The influence of geometry on the optimal topology was also included in this study.
The optimal topologies found in the 52 problem are shown in Fig. II. For each of the
problems. the optimal topologies obtained in this study are identical with those of Dorn et
al. (1964). The designs for 'l. = 0.5 tend to be much heavier due to the lower truss depth,
and hence greater cross-sectional areas are reg uired to provide the necessary strength. Truss
weights for each of the three geometry parameters are comparable to those documented in
the literature (Fig. 11).

A final numerical experiment with this truss structure consisted of the inclusion of
member buckling constraints in addition to the stress constraints in the 52 problem. Optimal
topologies for this problem and for three distinct values of the geometry parameter !'l. are

Fig 10 OptimallOpology using S I topologies of depth 240 in developed in 52 problem for bridge
type truss.
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a = 1.0

Dobbs & Felton
a = 1.5
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w =228.0

w = 222.5

w = 232.4

w = 205.0

Dam & Gomory

w = 192.2

Present study

w = 202.9

R\/><J
w = 215.0

w = 210.2

w = 230.6

Fig. II. Optimal topologies for bridge-type truss with stress constraints ('X = 0.5, 1.0 and 1.5).

a = 0.5

w = 228.0

w = 222.5

w = 232.4
(w = 222.5)

a = 1.0

Dobbs & Felton

w = 210.0

Dom & Gomory

w = 200.2

Present study

w = 210.1
(w = 200.2)

a = 1.5

RS/><J
w = 230.0

w = 227.0

w = 232.5
(w = 222.7)

Fig. 12. Optimal topologies for bridge-type truss with stress and buckling constraints (0: = 0.5, 1.0
and 1.5)

shown in Fig. 12. These topologies are similar to those presented by Dorn, with the
exception of the case where'Y. = 1.5. The weights of the trusses in Fig. 12 are compared to
the results of Dorn ef 01. (1964) and Dobbs and Felton (1969). In these previous studies,
topologies obtained by considering stress constraints only were fixed, and their cross
sectional dimensions resized to satisfy buckling constraints. The weights are lower than
those obtained in the present study because a continuous variation in cross-sectional



3356 P. HaJela and E. Lee

Tahle 4. Cumpansuns of the optimal weights for the hridge-type truss with stress and huckling
constraInts

Case

1 ~. 0.5
1 ~. 1.1l
Y. = I.'

Dohhs and Felton ( 1<)6<))
i\ = continuous

ng.o
211l.0
230.0

Durn el al. (1964)
i\ = continuous

222.5
200.2
227.0

Present study
ll. = 0 10/continuous

232.4/222.5
210.1'200.2
232,5/2n.7

dimensions was considered in those studies; in the present work, the cross-sectional dimen
sions were allowed to vary discretely in increments of 0.10 inc. The weight of the optimal
truss for which '1. = 0.5 is not affected due to the inclusion of buckling constraints, as the
structural members are short and therefore not critical in Euler buckling. The design for
y. = I.n is the lightest of all trusses considered. Here, the truss depth provides the desired
stiffness. and the slightly longer members do not introduce a weight penalty greater than
that incurred by increasing member cross-sectional dimensions as required for the case
where '1. = 0.5. Additionally, for '1. = 1.0, the members are not long enough such that a
weight penalty is required to guard against a Euler instability. For '1. = 1.5, the optimal
topology differs significantly from that found in Dorn e{ al. (1964). For this optimal
topology, the structural weight would only be 222.7 Ib for continuous variations of the
members, and would be better than the optimal topology presented by Dorn. The results
are presented in Table 4 and are compared to those of Dorn e{ al. (1964) and Dobbs and
Felton (1960).

, CLOSI\lG REMARKS

This paper presents an extension of the genetic search procedure to determining the
optimal topology of truss structures for stress, buckling and displacement constraints. The
method is a variant of the ground structure approach, and embodies a parallel search that
examines characteristics of a number of partially connected ground structures to create
new designs with improved performance. The method offers a distinct advantage in that
structural members can be both added and removed during the design process. Kine
matically stable structures are obtained as an outcome of the search process. Yet another
advantage of the approach is that it allows inclusion of general design constraints such as
thosc pertaining to stress, displacement. frequency and buckling response in the problem.
Previous efforts in topology optimization have been restricted to stress and displacement
constraints only. As the number of possible structural connectivities increases, increased
bit-string lengths representing the designs are required. This increase in string length is also
required when a higher precision of design variable representation is considered. These
would normally require significant increases in population size to prevent premature con
vergence to a local optimum. Preliminary findings of the present work indicate that the use
of a sharing function approach preserves genetic diversity in small-sized populations, and
effectively curtails the need to increase population sizes with longer string lengths. The use
of successively increasing the precision of design variable representation (multistage search)
also provides similar advantages. In summary. it is important to emphasize that the genetic
search procedure is a good exploratory tool to cvaluate topologies in a discontinuous design
space. Once a fev, meaningful topologies have been identified, the member sizing problem
can be related to a locally convergent optimization algorithm, with significant attendant
savings in computational resource. While the number of function evaluations required to
generate optimal topologies may be less with the use of more traditional search techniques,
the latter have been developed for a very limited class of problems, namely topology design
for stress and displacement constraints.

A c!;/lo\l-{cd,je/l/c/l {\ Partial surrort receIved under ARO Contract DAAH-04-93-G-003 is gratefully acknowl
edged.
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